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Reactions of the type Na-\-Nb —> Yc-\-Yd, where Na and Nb are nucleons, and. Yc and Yd are hyperons, 
occur with significant probabilities in the interactions of energetic antinucleons. Particular examples which 
have been studied recently are the reactions p-\-p —> A+A, A+2°, 2°-f-A, 2~"+2+. Pais has discussed some 
consequences for the reaction cross sections and the polarizations of the final particles of the presumed 
invariance of the relevant strong interactions under the parity and charge-conjugation operations. In the 
present paper, these considerations are extended to encompass two-particle spin correlations in the Yc, Yd 
system. Measurements of the correlation parameters would provide tests for charge conjugation, parity, 
and CP invariance in the strong interactions of strange particles, and could, in addition, be used to check the 
relation between antihyperon and hyperon decay asymmetry parameters predicted on CPT and T invari­
ance for the weak interactions, t h a t a ^ = — ay. Moreover, measurements of the spin correlation parameters 
would provide valuable information about the spin dependence of the reactions, hence, some tests for the 
models have been proposed for the reaction mechanism. Calculations by Bessis, Itzykson, and Jacob, and 
by Sopkovich using specific models suggest that the correlation parameters may be measurably large. We 
consider finally in an Appendix the relation between the Wolfenstein-Ashkin spin transition matrix which 
is used in the body of the paper, and the relativistic parametrization of the transition amplitude in the 
helicity representation. The general partial-wave expansions of the coefficient functions in the transition 
matrix are derived. 

I. INTRODUCTION 

" O EACTIONS of the type 

Na+Nb->?c+Yd, 
where Na and Nb are nucleons, and Yc and Yd are 
hyperons, occur with significant probabilities in the 
interactions of energetic antinucleons.1-2 Particular 
examples which have been studied recently include the 
reactions p+p -> A+A, p+p -> A+2°, p+p -> 2°+A, 
and p+p —> 2)~+2J+. The strong interactions are pre­
sumably invariant under the parity and charge-con­
jugation interactions, and under the combined operation 
CP. Some consequences of these symmetry operations 
for the reaction cross sections and the polarizations of 
the final particles in reactions (1) have been discussed 
by Pais.3 I t is the purpose of this paper to extend those 
considerations to the two-particle spin correlations in 
the Yc, Yd system. Because of the parity violations in 
the decays of the hyperons, and the concomitant spin-
dependent decay asymmetries, the two-particle spin 
correlation parameters can be determined from the 
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angular correlations in the over-all decay distributions. 
The reactions are therefore essentially self-analyzing, 
and it is not necessary to perform second scattering 

/ j \ experiments with the decay products. 

The spin dependence of reaction (1) is considered in 
Sec. I I using the spin transition matrix methods of 
Wolfenstein and Ashkin.4 The cases of even and odd 
relative (Yc,Yd) parity are both considered; the results 
are quite general,4a and could be applied, for example, to 
reactions involving spin —\ hyperon isobars as well as 
to the reactions previously noted. The most general 
form of the transition matrix which is invariant under 
the parity operation involves eight independent func­
tions of the scattering angle for either even or odd rela­
tive (Yc,Yd) parity. The operation of charge con­
jugation relates the transition matrix for reaction 
(1) to that for the charge conjugate reaction, 
Nb+Na—> Yd+Yc. Injthe special case of a self-charge-
conjugate reaction, N+N —> Y+Y, the transition 
matrix involves only six functions of cos#. The general 
forms for the production and decay angular distribu­
tions are easily derived; the latter may be expressed in 
terms of the_polarization and spin correlation parame­
ters for the Yc, Yd system. 

These general results have several interesting appli­
cations. For example, a failure of any of the equalities 
IQ(W,CQS6) = IO(W,COS6), Pc=Pc, Fd=Pd, Cij^Cji 
which relate the differential cross section, polarizations, 
and spin correlation parameters for a reaction and its 

4 L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952); also 
L. Wolfenstein, in Annual Reviews of Nuclear Science (Annual 
Reviews Inc., Stanford, California, 1956), Vol. 6. 

4a Note added in proof. Spin correlation phenomena have been 
considered in detail by S. Barshay [Phys. Rev. 113, 349 (1959)] 
for the special case in which the final state is restricted to orbital 
angular momentum zero (production at threshold). Correlation 
phenomena have been considered for particular models by several 
authors (Refs. 5-7). 
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charge conjugate would evince a violation of CP in the 
reactions. In addition, a nonzero polarization for either 
final particle along a direction lying in the reaction 
plane, or a nonvanishing two-particle spin correlation 
with respect to the normal to the reaction plane and a 
direction in that plane, would signify a violation of 
parity. If invariance of the strong interactions under C 
and P is assumed, the results may be used to test the 
symmetry properties of the hyperon decay processes. 
The assumption of CPT and T invariance for the weak 
interactions leads to the prediction, as yet untested, 
that the asymmetry parameters for the decay of a 
hyperon and its antiparticle are related by OY= —ay. 
As was noted by Pais,3 the equality of the polarizations 
of the hyperons produced at the angles 0, </>, and of the 
antihyperons produced in the charge-conjugate re­
action at the angles w—6,7r+$, permits a direct test of 
this a prediction. However, the absence of significant 
polarizations does not preclude at least a partial test of 
this relation if any of the two-particle spin correlation 
parameters are nonzero. The angular asymmetries in the 
decay distribution may also be used to provide lower 
bounds on the asymmetry parameters. More conven­
tionally, measurements of the spin correlation parame­
ters would provide valuable information about the spin 
dependence of the reactions, and can be used to test 
various models which have been proposed for the re­
action mechanism. For example, quite different pre­
dictions for the correlation parameters are obtained from 
the single K* exchange model proposed by Bessis, 
Itzykson, and Jacob,5 the modified i£* plus K exchange 
model of Sopkovich,6 and the K* Regge pole model of 
Chan.7 Detailed calculations based on these models 
suggest that the spin correlation parameters may be 
measurably large. 

We consider finally in an Appendix the relation 
between the Wolfenstein-Ashkin spin transition matrix 
M,4 and the relativistic transition matrix as parame­
trized using the helicity representation for angular mo­
mentum.8 I t is shown in particular that the M-matrix 
approach is correct relativistically if all spin expectation 
values are referred to the respective rest systems of the 
particles in question. The general partial-wave expan­
sions of the coefficient functions in the transition matrix 
are also derived, and the appearance of certain angular 
factors in the spin polarization and correlation co­
efficients is demonstrated. 

II. SPIN CORRELATIONS IN THE 
REACTION Na+Nb -> F c + Yd 

a. General Properties of the Transition Matr ix 

The spin-dependent features of a reaction d-\-b—> c+d 
involving only spin-J particles can be described using a 

5 D. Bessis, C. Itzykson, and M. Jacob, Nuovo Cimento 27, 
376 (1963). 

6 N. J. Sopkovich, dissertation, Carnegie Institute of Tech­
nology, 1962 (unpublished). 

7 C. H. Chan, Phys. Rev. 133, B431 (1964). 
8 M. Jacob and G. C. Wick, Ann. Phys. (N. Y.) 7, 404 (1959). 

4X4 transition matrix M which expresses the spin de­
pendence of the final wave function in terms of that of 
the initial wave function. In particular, if the density 
matrix of the initial system is ps&, that of the final 
system is given by 

p-cd=MPahMK (2) 

If we assume, furthermore, that p«& is normalized, 

Trpab= 1, 

and that the elements of M are properly normalized 
transition amplitudes referred to the center-of-mass 
system, the differential reaction cross section in that 
system is given by 

da/dti = Trp-cd= TrMpatMf, (3) 

where the trace extends over the spin indices only. 
More generally, the expectation value of any spin-
dependent operator A is given in the final state by 

(A)Trp-cd=TrAp-cd. (4) 

The 4X4 matrices M and p may be expressed con­
veniently as linear combinations of the sixteen in­
dependent matrices o-#, i,j=0, 1, 2, 3, formed by taking 
direct products of 2 X 2 matrices, 

Here, <TQ is the 2X2 unit matrix, and the <ij with j = 1, 2,3 
are the usual Pauli spin matrices. The a^ satisfy the 
orthogonality relations 

Tro"#(7M=45^7. 

Since these matrices span the space of 4X4 matrices, 
M and p may be written in the form 

P= 2-iiJ Pij&ij j 

where 
tn>ij=lTr<rijM 

and 
Pij~ i Trcr^p, pij*=pij. 

I t is well known in the case of nonrelativistic elastic 
scattering,4 that the matrices oi and cr2, which appear in 
the expressions for the density matrix, can be inter­
preted as the Pauli spin matrices for the initial or final 
particles. This interpretation is also valid for inelastic 
processes and for relativistic particles provided, in the 
latter case, that the spin operators are assumed to refer 
to the rest systems of the respective particles. This point 
is discussed in more detail in Appendix B. We will 
henceforth follow the convention that the operators CTI 
and &2 act, respectively, on the spin indices of the anti-
particles and the particles. 

The invariance of the strong interactions under 
proper inhomogeneous Lorentz transformations implies 
that we need consider M only in the center-of-mass 
system, and that it must transform in that system as a 
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TABLE I. Transformation properties of the rotational in­
variants which can enter the general transformation matrix 
M(<ri,cF2,l,m,n). 

Invariant 

1 
(<ri+cr2)«n 
(OTi — o r 2 ) - n 

o-i-lovl 
0*1 • mo'2 • n 
(?! • no"2 • n 
ffi • lo*2 • m+o"i • mo'2 • 1 
<Ti • 1<J2 • m—cri • mcr2 • 1 
O i - f o ^ - l 
(cri—cr2)*l 
(<Fi+<r2)-m 
(ori—<r2).m 
o,i»l<r2»n+o,i-nff2

,l 
o v l o v n — o v n o v l 
ai • mff2 • n+o"i • n<r2 • m 
0*1 • mo"2 • n—0"i • n<r2 • m 

P 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ — 
— 
— 
— 
— 
— 
— 
— 

C 

+ 
+ 
— 
+ 
+ 
+ 
+ 
— 
— 
+ — 
+ — 
+ 
— 
+ 

CP 

+ 
+ 
— 
+ 
-f 
-f 
+ 
— 
+ 
— 
+ — 
-f-
— 
+ 
— 

scalar under rotations. The sixteen independent com­
ponents of M must therefore be expressed in terms of 
scalar products formed from the initial and final 
momenta, and the Pauli spin matrices <ri and 0*2. The 
discussion is greatly facilitated by the introduction of 
three orthogonal vectors which define a right-handed 
coordinate system in the center-of-mass frame,9 

l=p'+p=2lcos%6, 

m=p'-p=2?n sinjfl, (6) 

n=pXp' = /fi sin0. 

Here, p and p' are unit vectors in the directions of 
motion of the incident and emergent antiparticles; the 
scattering angle in the center-of-mass system is defined 
by 

cose=p.p>=p(Na)'P(Yc). (7) 

A complete set of sixteen independent rotational scalars 
constructed from these vectors and the Pauli matrices is 
given in Table I. These operators may appear in the 

The coefficients Mj are functions of the total energy W 
and the scalar product p-p'=cosd. Charge-conjugation 
invariance imposes the additional restriction that the 
functions Mj be related to the functions Mf as 

MfiW, cosd) = Mj(W, cos0), i ^ 4 , 8, 
M*C(W, cos0)= -MA(W, cos0), (12) 

M8
C(W, cos0)= -M8(W, cos0). 

9 The particular choice of basis vectors is governed by the re­
quirement that M have simple transformation properties under 
C and P. Other possible choices, for example, the set p', n, nXp', 
which is natural for the helicity transformation f of Appendix B, 
lead to rather complicated relations between the coefficient func­
tions, in this case under C. 

general expression for the transition matrix multiplied 
by complex functions of the scattering angle and the 
total energy in the center-of-mass system. The in­
variance of the strong interactions under space in­
versions requires that M transform as a true scalar 
(pseudoscalar) if the relative parity of the final particles 
is the same as (different from) that of the initial par­
ticles. Under the parity transformation cr—» <r, 1—> —1, 
m —» — m, and n—> n. Thus, it is necessary that 

M(cri,a2,l,m,n) = i;pM(o'1, <r2, — 1, — m, n ) , (8) 

where t\p is equal to +1(—1) if the relative intrinsic 
parity of the initial and final particles is even (odd). 
The charge-conjugation operation changes the anti-
particles in reaction (1) into particles with the same spin 
projections and momenta, and conversely. However, the 
basic vectors are always defined in terms of the mo­
menta of the antiparticles, and the relabeling of the 
particles therefore induces the transformation I—> — 1, 
m —•» — m, n —» n; in addition, the roles of the anti-
particle and particle spin matrices ai and 0*2 are inter­
changed, cri —» or2, cr2 —> cri. The assumption of charge-
conjugation invariance for the strong interactions con­
sequently implies that 

M(<rhv2X™,n) = ycMc(<T2, en, — 1, — m, n), |i/c | = l , (9) 

where Mc is the transition matrix for the charge-
conjugate reaction, Nb+Na—> Yd+Yc. We note also 
the effect of the combined operation CP, 

lf(ori,<F2,I,m,ii) = «7CpMc(or2,o'i,I,m,n), |^c p | = l . (10) 

The time reversal invariance of the strong interactions 
unfortunately does not impose any further useful re­
strictions on the structure of M: the time inverse 
reaction, Yc+Yd —>Na+Nb is not accessible experi­
mentally. 

The most general form for the transition matrix that 
transforms correctly under rotations and reflections is 
easily determined. For even relative (Yc,Yd) parity,10 

The phase conventions have been chosen so that r}c=l. 
I t should be noted that 6 is always the scattering angle 
of the antiparticle, and thus refers to different particles 
in Mj and Mf. In the case of the self-charge-conjugate 
reactions N+N —> Y+Y, the restrictions noted in 
Eq. (12) imply that M*(W, cosd) = M8(W, cos0) = O. 
These relations follow also from the more general re­
quirement of invariance under the combined operation 
CP. 

The general form for the transition matrix in the case 

10 We assume, of course, that the (Na,Nb) relative parity is even, 
hence, that the (Na,Nb) parity is odd. 

M=M i+M2ffi« vi+Mz (cri+ o*2) •n+M4(ori—cF2)'n+M"BO'i«lo'2'l+Af60,i-ma2,m 
+if7[ai'lcf2 ,n+o ,i*no ,

2«l]+^8[ori'lcr2*m— c i - m o v Q > i?p= + l . (11) 
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of odd relative (Yc,Yd) parity is given by 

M=M1(V1+<T2)*1+M2(<TI— (T2) -l+Afa (ori+<r2) •m+l f 4 (<n a2) • m+ M6[o
,i • 1<T2 • n + ax • n<r2 • 1] 

+M6(CFI xcF2)«m+M7[ai«mo-2«n+(ri«ncr2, m]+ikf8(<Fi x<r2)*l, %= — 1 , (13) 

with the additional restrictions, implied by charge-
conjugation invariance, that the coefficient functions 
Mj and M/ be related as 

(14) 
M,iW, cosd) = Mjc(W, casS), j= 2,4,6,8 

Mj(W, cos$)= -Mjc(W, cos0), j= 1,3,5,7. 

b. General Results for Spin 
Correlation Phenomena 

_ The density matrix for the final state in the reaction 
Na+Nb—» Yc+Yd is completely specified by the six­
teen coefficients p# in the expansion in Eq. (5). These 
coefficients may be identified with the usual spin po­
larization vectors Pg and P<*, and the joint spin correla­
tion parameters C»y, i, j=l, m, n, defined according to 
the relations 

IoPej= TravPM, (15) 

and 
IoPdj—Tr<r2jpcd, (16) 

IoCij — Traucr2jpcd. (17) 

Here, the cry are the components of cr in the /, m, and n 
directions, and IQ(W,6,<I>) is the differential reaction 
cross section, 

h{WM) = TrP8d=TrMpabM*. (18) 

An additional spin parameter C is also of interest, 

this parameter represents the expectation value of 
o,i'o,

2 in the final state, hence, measures the relative 
weights of the singlet and triplet spin configurations. 

In the situation most likely to be encountered in 
practice, the initial particles are unpolarized. The 
density matrix p5& is then equal to J times the 4X4 
unit matrix, and p-cd is given by 

p-cd=iMMK (20) 

We will confine our attention to this case, although it 
will become clear that more general situations must be 
considered if the structure of M is to be determined in 
full. 

A number of general properties of the polarization 
and spin correlation parameters may be deduced with­
out explicit calculation. It is readily verified that the 
parameters P-Cj, Pdj, and dj are all real and less than 
unity in absolute value.11 The joint spin parameter C 

11 The reality of the parameters Pj and Qj follows from the 
Hermitian character of the density matrix and the operators a a. 
The bounds on the absolute values are readily established by 
applying the Schwartz inequality to the expectation values of the 
operators (l+o-;/)2. 

is^also real and is restricted to the range — 3 < C < 1 . 
The invariance of the strong interactions under the 
combined operation CP, and the resulting symmetry 
properties of transition matrix, Eq. (10), lead to several 
relations between the parameters for the reactions 
Na+Nb-+?c+Yd and Nb+Na-> Yd+Ye: (i) The 
total cross sections and the angular distributions of the 
antihyperons are identical for the two reactions. (The 
production angles are defined in terms of the mo­
menta of the antiparticles, different in the two cases.) 
(ii) The polarization of the antihyperon (hyperon) 
produced at the angles 6, </> in the YcYd reaction is the 
same as that of the hyperon (antihyperon) produced at 
the angles T—6, 7r+0 in the charge conjugate YdYc 

reaction. Relations (i) and (ii) have been noted pre­
viously by Pais.3 (iii) The spin correlation parameters 
dj and dj for a reaction and its charge conjugate are 
related by Cty=Cy,-. These results may be sharpened 
somewhat if it is assumed that the strong interactions 
are invariant under P and C separately. Conservation 
of parity leads to the familiar restrictions, (iv), 
Pcl~ Pern— Pdl~ Pdm—0, a n d (v), Cin=Cnl==Cmn 

= Cnw=0. Charge-conjugation invariance adds new re­
strictions only in the case of self-charge-conjugate re­
actions, for which, (vi), PY=PY, and Cim=Cmi. We 
note finally several general requirements which follow 
from the rotational invariance of MMf: (vii) For 
forward production of the antihyperon, it is not pos­
sible to distinguish the m and ft directions, but / is well 
defined. Consequently, for 0=0, P-c=Pd=0, Cmm=Cnny 

Cim=Cin=0, and Cmi=Cni=0. (viii) For 0=7r, m is 
well defined, but / and H are not, and one finds that 
Pc—Pd—0, Cu—Cn = 0, and Cmiz=zCmn=0. 
In stating relations (vii) and (viii), we have assumed 
that parity is conserved. The results for the differential 
cross section, polarization, and spin correlation parame­
ters specific to the cases of even and odd relative 
(Yc,Yd) parity are given in Appendix A. It is not pos­
sible to distinguish the two cases in general; however, 
particular models for the reaction mechanism, for 
example, single-particle exchange, may lead to quite 
different predictions for the spin correlation parameters 
for the different relative parities.5-7 

The violation of parity in the decays of the hyperons 
and antihyperons, with the concomitant dependence of 
the decay angular distributions on the particle polariza­
tions, provides a powerful tool for the analysis of spin 
correlations in reactions which lead to AA, S~2+, A2+, 
2~A, or E+S" final states. Spin correlations in systems 
which involve 2° or 2° hyperons can be analyzed using 
the asymmetry in the decay of the A or A produced in 
the fast electromagnetic transition S°—» A + Y or 
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2° —> A+y , but with some loss in sensitivity resulting 
from the loss of polarization in the intermediate step. 
Because of the absence of any significant decay asym­
metries, it does not appear feasible at the present time 
to measure spin correlations in two-particle systems 
which involve a 2+ or 2~ hyperon. We shall therefore 
restrict our attention to those cases for which a decay 
asymmetry is expected, and calculate the resulting spin-
dependent correlations in the angular distributions of 
the decay nucleon and antinucleon. 

The density matrix p-cd—\MM^ specifies the proba­
bility that the antihyperons produced in the 6, <j> direc­
tion in the center-of-mass system, and the hyperon 
produced in the IT—0, x+</> direction, be found in defi­
nite spin states when observed in their respective rest 
systems.12 The subsequent decays of those particles are 
described in their rest systems by the transition 
matrices13 

M-e=A-e+B-eoi-pi (21) 
and 

Md=Ad+Bd02'fa, (22) 

where pi and p2 are unit vectors in the directions of 
motion of the resultant antibaryon and baryon, re­
spectively.14 The coefficients A and B are the Jz=\ S-
and P-wave decay amplitudes, normalized according 
to the relation15 

M | 2 + J ^ | 2 = ( 4 7 r ) - 1 . (23) 

The production of the hyperons, and their decay as 
seen in their respective rest systems, is therefore com­
pletely described by the density matrix 

p=M-cMdP-cdMdWJ. (24) 

Because it is not feasible at present to measure such 
quantities as the polarizations of the decay nucleons, 
we will consider only the angular distribution of those 
particles. 
__ The cross section for producing Yc and Yd in a 

Na,Nb collision, with Yc emerging in the center-of-mass 
system in the 6, <j> direction in an element of solid angle 
dti, and the decay antibaryon and baryon emerging in 
dQi and G&22 in the rest systems of Yc and Ydj respec­
tively, is given by Trp, 

dsa/ (dttdttxd^) = I (W ,6 ̂ 6 h(f>h6 2^2) 

= TrMcm-cMjMdP-cd- (25) 

12 This restriction is discussed in detail in Appendix B. 
13 T. D. Lee and C. N. Yang, Phys. Rev. 108, 1645 (1957); 

J. Leitner, Nuovo Cimento 8, 68 (1958). 
14 The convention used in Eqs. (21) and (22) follows that of 

recent experimental papers in using the direction of motion of the 
nucleon rather than that of the pion in the &-p term. With this 
convention, the asymmetry parameter in the decay of a polarized 
hyperon is equal to the helicity of the nucleon in the decay of an 
unpolarized hyperon. 

15 This normalization is appropriate to a situation in which 
both hyperons are observed to decay. Only such events are useful 
in determining the two-particle spin correlations. 

This expression may be simplified using Eqs. (21), 
(22), and (23). 

MfMe= (^Cl+acvvpil, (26) 
and 

MfMd= (47r)-1[ l+a,cr2^2] , (27) 

where, in each case, a is the asymmetry parameter for 
the decay14 

o : = 2 R e ^ * B / [ M | 2 + | £ | 2 ] . (28) 

Using these results, the expression for the cross section 
may be written in the form 

1= (4TT)-2 Tx{\+ac®vpi){l+advrp2)pcd 

= ( / o / 1 6 ^ ) [ l + a 8 P 8 ^ i + a d P d ^ 2 

+adad X) Cijpi,ip2,j~] • (29) 
i,3=l,m,n 

This equation displays clearly the remarkable fact that, 
as a consequence of the parity violation in the decays 
of the hyperons, the complete set of polarization and 
spin correlation parameters for the reaction can be de­
termined from observations of the asymmetries in the 
decay angular distributions, and the angular correla­
tions of the decay momenta pi and p2. Measurements of 
the reaction cross section Io(W, cosfl), the hyperon and 
antihyperon polarizations, and the five independent, 
nonvanishing spin correlation parameters, provide 
eight restrictions on the eight complex amplitude func­
tions Mj(W, cos0) for given values of W and 6. Fifteen 
independent quantities are necessary to determine these 
functions up to an over-all phase. The extra conditions 
on the Mj can probably be obtained from studies of the 
asymmetries and angular correlations in an experiment 
in which the incident antinucleon or the target nucleon 
is polarized, but this has not been checked in detail. 
The case of self-charge-conjugate reactions is somewhat 
more favorable, since the functions M\ and Ms in 
Eq. (11) must vanish. The number of independent 
parameters in the transition matrix is consequently 
reduced by four, while the number of independent ob-
servables is only reduced by two [_Pz = Pd, Cim=Cmi2* 

The analysis of the reactions p+^>—->A+2° and 
p-\-p —> 2°+A is complicated both experimentally and 
theoretically by the rapid, parity conserving, electro­
magnetic decay of the 2° or 2°. For simplicity, we will 
restrict our attention to the first reaction. The density 
matrix p, which describes the production of the A,2° 
system, decay of the 2°, 2° —> A + 7 , and the subsequent 
decays of the A and A hyperons, is given by 

p= M XMAMZP ivM^M^M x f , (30) 
where 

Pl2=MpPpMt->iMMt (31) 

for unpolarized initial particles. The transition matrix 
M2, which describes the decay of the 2°, is given with an 
appropriate normalization by 

ilf2=(8ir)-1/2o-^AX8 (32) 
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for even relative (2J°,A) parity. In the unlikely circum­
stance that the relative (2°,A) parity should be odd,16 

the decay matrix would be given by 

Jf2=(&r)-1/2iF.e. (33) 

Here £ is the polarization vector of the photon, £ - ^ A = 0 , 
and PA is a unit vector in the direction of motion of the 
decay A as seen in the rest system of the 2°. The most 
general result for the correlated production and decay 
angular distributions is given by Trp, 

/ (A,S°) = d*<r/(d£ldtiAdQ,ldQl2) 

= TTMIWIM^MAWAM^PAX , (34) 

where the elements of solid angle refer successively to 
the direction of motion of the A as seen in the center-
of-mass system, and to the directions of the A, anti-
nucleon, and nucleon in the decays of the 2°, A, and A, 
each referred to the rest system of the decaying particle. 
The trace includes a sum over the photon polarizations. 
The products of decay matrices are easily reduced, and 
after summing over the photon polarizations, one 
obtains 

/ (5 ,S0)=(4ir) -»Tr( l+ a i tFi^i ) 

X (1—(*Ap2 'pA<T2' PA)PAX 

= (Io/6^)Zl+aAPA'pi-aAp2'hh'^ 

— OL-AOLAprpk H2 CiJplipAjl, (35) 
ij=l,m,n 

irrespective of the relative (2J°,A) parity. The non-
vanishing polarization and spin correlation parameters 
can again be determined by measuring the asymmetries 
in the angular distribution, and the correlations between 
the directions of motion of the decay nucleon, anti-
nucleon, and the intermediate A. The expression for 
7(A,S°) may be simplified, but with some loss of in­
formation, by integrating over the direction of motion 
PA of the A in. the 2° —» A + 7 decay; this results in an 
expression of the form given in Eq. (29), but with 
ac=az and 0;̂ == — §«A. 

c. Applications of Spin Correlation Phenomena 

The assumption of CPT and T invariance for the 
weak interactions leads to the prediction, as yet un­
tested, that the asymmetry parameter for the decay of 
an antihyperon is the negative of that for the corre­
sponding hyperon, ay= —ay- The equality of Pr and 
Py in the self-charge-conjugate reactions p+p —>A 

16 Even (Z,A) relative parity is strongly favored by the in­
variant mass spectrum of Dalitz pairs in the decay 2° —> A°+e++e~ 
[H. Courant, H. Filthuth, P. Franzini, R. G. Glasser, A. Minguzzi-
Ranzi, A. Segar, W. Willis, R. A. Burnstein, T. B. Day, B. Kehoe, 
A. J. Herz, M. Sakitt, B. Sechi-Zorn, N. Seeman, and G. A. Snow, 
Phys. Rev. Letters 10, 409 (1963)]. In addition, odd K2N parity 
is favored by the data of R. D. Tripp, M. B. Watson, and 
M. Ferro-Luzzi, Phys. Rev. Letters 8, 175 (1962), while odd KAN 
parity, hence, even 2A parity is favored by the experiment of 
Block et al. [M. M. Block, E. B. Brucker, J. S. Hughes, 
T. Kokucki, C. Meltzer, F. Anderson, A. Pevsner, E. M. Harth, 
J. Leitner, and H. O. Cohn, ibid. 3, 291 (1959)]. 

+ A , p+p —-» 2 ~ + 2 + , and p+p —> S + + S ~ permits a 
direct test of this relation provided the polarizations are 
large enough to give a significant decay asymmetry.17 

The equality of the polarizations of the hyperon pro­
duced at the angles 6, cj> in a given reaction, and the anti­
hyperon produced at the angle w—d, ir+(j) in the charge-
conjugate reaction, permits a second independent test 
of the equality ay— —ay using general reactions 
Na+Nb—» Yd+Yc The absence of significant polari­
zations, to be expected on the basis of single-particle 
exchange models for reactions of this type does not 
preclude the study of ay if the angular correlation 
parameters a-dotdPij for the two-particle decay distribu­
tion are measurably large. The equalities Cij=Cji> 
which relate the spin correlation parameters in a re­
action and its charge conjugate, permit a direct com­
parison of the products aiaa, and acad; these should be 
equal. If, say, a-c is known to be equal to —ac from some 
independent experiment, a direct comparison of aa and 
ad is possible. There are in general five possible experi­
ments of this type, corresponding to the five non-
vanishing correlation coefficients. We note also that, if 
the angular correlations are measurably large, the limits 
I Cij I < 1 provide lower bounds for the products | a-caa | , 
hence, if one of the asymmetry parameters is known, 
lower bounds for the absolute value of the second 
parameter. In the case of self-charge-conjugate re­
actions, assuming that ar= —ay, one obtains a lower 
bound on | a r | 2 . These bounds could, in principle, be 
more sensitive than those obtained from the values of 
I aP I. The argument may be inverted by using the 
upper bound | a-cad | = 1 in conjunction with measured 
angular correlation parameters to obtain a lower bound 
for I dj (. In the special case that the joint correlation 
parameter C exceeds unity in absolute value, as de­
termined using either the foregoing bound, or known 
values for the product | a~cad \, C must lie in the range 
— 3 < C < — 1. The sign of the product a-cad is then the 
negative of the sign of a-cddC determined from the decay 
angular correlations. 

One may also use polarization and spin correlation 
phenomena to test for possible violations of CP, P , or 
C in the strong interactions involving strange particles. 
Possible tests are as follows: (i) A failure of any of the 

17 Present values of the asymmetry parameters for hyperon 
decays are as follows: A —> ^+7r~, aA = 0.62±0.07 [J. W. Cronin 
and O. E. Overseth, Phys. Rev. 129, 1795 (1963)]; S + - ^^+7r 0 , 
a:so=__o.79_o.o8+0-09 [R. D. Tripp, M. B. Watson, and M. Ferro-
Luzzi, Phys. Rev. Letters 9, 66 (1962); E. F. Beall, B. Cork, 
D. Keefe, P. G. Murphy, and W. A. Wenzel, ibid. 8, 75 (1962); 
B. Cork, L. Kerth, W. A. Wenzel, J. W. Cronin, and R. L. Cool, 
Phys. Rev. 120, 1000 (I960)]; H - ^ A + T T - , as ; -=-0 .50±0.13 
[L. W. Alvarez, J. P. Berg, R. Kalbsfeisch, J. Button-Shafer, F. 
T. Solmitz, M. L. Stevenson, and H. K. Ticho, 1962 International 
Conference on High Energy Physics at CERN, edited by J. Prentki 
(CERN, Geneva, 1962), p. 433], and «s~=-l.O+0.35_0"0 

[L. Bertanza, V. Brisson, P. L. Connolly, E. L. Hart, I. S. Mittra, 
G. C. Moneti, R. R. Rau, N. P. Samios, I. O. Skillicorn, S. S. 
Yamamoto, M. Goldberg, L. Gray, J. Leitner, S. Lichtman, and 
J. Westgard, ibid., p. 437]. The convention for the sign of a is in 
each case that noted in footnote 14. 
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equalities I0= J0, P-c=PCi Pd=Pd, Cij— Cji which relate 
the differential cross sections, polarizations, and spin 
correlation parameters for a reaction and its charge 
conjugate would evince a violation of CP. (ii) A non­
zero value of any of the parameters Pci, Pcm, Pdi, Pdm, 
Cin, Cnh Cnm, Cmn would indicate a violation of P. 
There do not appear to be any tests for C invariance 
which do not at the same time test CP or P. 

In addition to the foregoing, relatively simple appli­
cations, the study of spin correlation phenomena pro­
vides a useful, or indeed, essential, adjunct to the 
determination of possible mechanisms for the reaction 
Na-\-Nb—> Yc-\-Ya. Although it has been seen that a 
complete evaluation of the transition matrix for the 
reaction is not possible on the basis of only those 
measurements that we have discussed, much useful 
information may nevertheless be obtained from the com­
parison of the predictions of specific models with the ex­
perimental results. The relevance of spin correlation phe­
nomena to tests of the single particle exchange model 
for the reactions p+p —> A+A, A+S°, 2°+A, and 
2~+2+ , has been emphasized by Bessis et al.h The ex­
perimental cross sections for the AA, A2°, and 2°A 
processes are strongly peaked in the forward direction 
at high energies; the data for the 2~X+ reaction are less 
conclusive, but some peaking may be indicated. The 
striking tendency for the antiparticle to maintain its 
original direction of motion is suggestive of a long-range 
exchange mechanism for the reaction. Although it has 
been argued5,18 that a single iT-meson exchange mecha­
nism is unable to account for the angular distribution 
in the AA reaction, assuming the K meson to be pseud-
oscalar relative to the AN system, this conclusion is 
incorrect: For reasonable values of the KAN coupling 
constant, the S-wave transition amplitudes exceed the 
limits imposed by unitarity. Reduction of these ampli­
tudes to the unitarity limits results in a reasonable 
angular distribution. Alternative models for the AA re­

action based on the exchange of a single / = 1~K* meson 
(885 MeV K~ir resonant state19) have been studied by 
Bessis et al.,5 Sopkovich,6 Chan,7 and Watson.18 These 
models also lead to reasonable angular distributions for 
the production process. In addition, the exchange of a 
spin-1 particle can lead to nonzero spin correlations in 
final state. The joint correlation parameter C was cal­
culated by Bessis et al.5 for the AA, AS0, 2°A, and S~2+ 
processes for an incident momentum of 3 BeV/c. This 
parameter was found to be small in the angular region 
in which the cross section is large, and would conse­
quently be difficult to measure. What is perhaps a more 
realistic model was considered by Sopkovich,6 who 
modified the single K* exchange mechanism by includ­
ing single iT-meson exchange, and, in addition, some 
absorptive effects. The latter were calculated using 
an optical potential matched to the pp elastic scat­
tering cross sections. This model predicts measura­
bly large values of Cmm and C»-» at forward angles for 
the reaction p+p —» A+A at 3.3 BeV/c incident anti-
proton momentum.20 The correlation parameters were 
not calculated for A2°, 2°A, and 2~2+ reactions, but 
should not differ greatly from those calculated for the 
AA reaction. Measurements of the hyperon and anti-
hyperon polarization and spin correlation parameters 
for these reactions would be of great interest in them­
selves, and would also serve as a useful check on the 
validity of the various single particle exchange models. 

APPENDIX A: RESULTS FOR THE REACTION CROSS 
SECTIONS, POLARIZATIONS, AND SPIN 

CORRELATION PARAMETERS 

The results for the differential cross section, and the 
polarization, and spin correlation parameters for the 
reaction Na+Nb-+ Yc+Yd are easily derived for the 
case of even (Yc,Yd) relative parity from the general 
form of the transition matrix given in Eq. (11). 

Io(W, cosfl) = | Mt 12+ | M21
2+2 sin201M31

2+2 sin201K4|2+|M2+2(l+cosi9)M5|2 

+ |M2+2(l--cos6>)M6|2+4sin2C|M7|2+|M8|2], (Al) 

IoPc=IoPd= 2H siii^{Re[ilf i*(Jf 8+M 4)+M2*(AT8-Af 4)] 
+4Im[If8*M2-(l+cos60(^^ , (A2) 

Io?d=hPd^=2ilsmd{RelM^(Ms-Md+M2^(Mz+M^ 
+ 4 Im[-Af8*Af2- (l+cos0) (M7+M8)*M5+ (1-cos0) (M7-M8)*M6]} , (A3) 

IoCu=2ReZM2^(Mi-M2)+2(l+cose)M1^,-2(l-cosd)M2^MG2 
- 8 sin20 ImZMz*M7-M4*M8] , (A4) 

/oCww=2 R e [ M 2 * ( M i - ^ 
+ 8 sin20 Im[M3*M7+M4*M8] , (AS) 

18 H. D. D. Watson, Nuovo Cimento 29, 1338 (1963). 
19 M. Alston, L. W. Alvarez, P. Eberhard, M. L. Good, W. Graziano, H. K. Ticho, and S. G. Wojeicki, Phys. Rev 

Letters 6, 300 (1961). 
20 The correlation parameters quoted by Sopkovich refer to a different coordinate system than that used in the present paper. 
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7oC„„= 2 RelM,*(,Mi-MJ-2(l+CQBB)Mi*M,-2(l-cos0)Mi*Ma 

- 4 s inW,*Jf6]+4 sin2e[ | Afy |
2 - | M81

2] , (A6) 

7oC!m=4 sin6» Im.l(l+cosd)(M3-Mi)*M5- (l-cosB)(M3+Mi)*Me 
+Mi*M^+isia0R<elMi*(M7+Mt)+M,*(Mi-M»)2, (A7) 

70Cm!=4 sine ImCCl+costfXArd-AfO^M*- (l-cos0)(Jfi-Af4)*jlf« 
-Jfj*Jf4]+4sm9Re[lf»*(JfT+lf8)+lfi*(Jf7-Af8)], ' (A8) 

The symmetry properties of the polarization and spin correlation parameters noted in Sec. l ib, the properties of 
the Mj under charge conjugation given in Eqs. (12), and the angular factors which appear explicitly in the fore­
going expressions, are easily checked when these relations are used. 

The general expressions for the differential cross section, the polarization, and the spin correlation parameters 
for the reaction iVa+A7^ —* Yc-\- Yd may be derived for the case of odd (Yc,Yd) relative parity using the transition 
matrix given in Eq. (13): 

IQ(W, cos0) = 4(l+cos0)[|J!fi|2+ |M 2 | 2 + |JI78|
2+sin2e|JI7B|2] 

+4(l-cos0)[ | l f3 |2+|M4|2+|i l f6 |2+sin2e |M7|2] , (A10) 

hV-e=hPzti=M sin0 Re{ (M 1-Mi)*l(l+casB)Ml+M,]+ (M3-M4)*[(l-cose)M7-ilf8]} 
+iii sine Im{(Mi+Mi)*(Mt+Mi)+[(l+cos8)M6-M6]*L(l-cos8)M7+M8~]} , (All) 

I<Pd=Id>d=4A sine Re{ (Jfx+lf,)*[(l+cosfl)Jf5-Afe]+ (M3+Mt)*£(l-cas0)M7+J78]} 

+U sine Im{ (Mi-Mt)*(Mt-Mi)+l(l+coaB)Mt+Msyi(l-coaB)M7-Ms']) , (A12) 

ItCu= 4( l+cose)[ |Mi | 2 - | M 2 1 2 - [Ms12]+4 sin2e(l-cose) |M712 

+8(l-cose) Im[(l+cose)Jf3*ilfB+M4*ili'6], (A13) 

/oCm m=4(l-cose)[ | lf3 |2- | lf4|2- |M6|2]+4sm2e(l+cose) |7lf6|2 

-8(l+cose)Im[(l-cos9)Afi*Jlf7-Jf,*Jf8], (A14) 

70C„m= 8(1+cose) Im[(l-cos0)Mi*ilf7+Af2*M8)-8(l-cos0) Im[(l+cose)M3*M6-M4*M6] , (A15) 

7oCim=4 sine Re{(M1+Mi)*(Mz-Mi)-Z(l+cos6)Mi+Me]i*l(l-cosd)M7+MB]} 
+ 4 sine Im{(Jf,+Jf 4)*[(l-cos0)Jf 7 - M 8 ] - (Mi - J f »)*[(l+cosfl)If » - l f . ]} , (A16) 

7oCmJ=4 sine Re{(Mi-il72)*(Jf3+M4)-[(l+cose)M6-if6]*[(l-cose)M7-3f8]} 
+ 4 sine Im{ (M3-M4)*[(l-cose)M7+J!78]- (Mi+M2)*[(l+cose)J76+M6]} , (A17) 

(-" Z n " ^ nl~ (-• mn~ ^nm= " • V/*-!*/ 

The symmetry properties of the polarization and spin complete generality in the center-of-mass frame in 
correlation parameters noted in Sec. l ib are again terms of a helicity transition matrix /(JF,0,0), the 
readily checked. elements of which are the transition amplitudes in the 

helicity representation, 
APPENDIX B: GENERAL THEORY OF THE 

REACTION Na+Nb -> Yc+Yd /x5xd;x5x&(^,0,0) = ( 2 T T / ^ ) ( ^ X ^ | 5 - 1 |00X5X6) . (Bl) 

In this Appendix, we will consider in greater detail In this expression, [00X1X2) is the plane-wave helicity 
the formal structure of the Wolfenstein-Ashkin spin state denned by Jacob and Wick, in which particle 1 
transition matrix M(W>d,<l>), in particular, the inter- moves in the 0,0 direction with helicity Xi, and particle 2 
pretations to be accorded this matrix in a relativistic moves in the opposite direction with helicity X2. The 
theory, and the structure of the coefficient functions momentum of either incident particle in the center-of-
Mj(W, cos0) in terms of the partial-wave transition mass frame will be denoted by p, and the total energy 
amplitudes. It will be convenient in this discussion to in that frame, by W. The initial state of the system can 
parametrize the relativistic scattering matrix using the be described by a density matrix p in the helicity space; 
helicity representation for angular momentum intro- the final state is then described by the density matrix 
duced by Jacob and Wick8; we shall rely heavily on fpff. The differential reaction cross section, polariza-
results derived in their paper. tions, and helicity correlations can be calculated by 

The reaction JV0+iV& —> Yc+Yd can be described in standard methods. For example, for spin —J particles 
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with no initial polarization, 

Io(W,cos0)--
[X] 

A-6: Xd;XoXfcl (B2) 

The plane-wave helicity states have the property 
that the helicities are unchanged by Lorentz transfor­
mations along the directions of motion of the particles, 
provided those directions of motion are not reversed. 
In particular, the helicity of a particle is preserved under 
the transformation to its rest system. Thus, the particles 
described by the helicity state |^XiX2) have spin pro­
jections Xi along the 6, <f> direction, and X2 along the 
7T—6, 7r+0 direction, when observed in their respective 
rest systems as reached by a simple Lorentz transfor­
mation from the center-of-mass system. The indices on 
the helicity amplitudes in Eq. (Bl) are therefore 
equivalent to ordinary spin indices in the particle rest 
systems, referred, however, to a different axis of quan­
tization for each particle; and the transition matrix 
expressed in terms of helicities is completely equivalent 
to a transition matrix connecting proper spin states 
(spin states in the particle rest frames). The Wolfen-
stein-Ashkin If-matrix is obtained by re-expressing this 
result in terms of proper spin states quantized with 
respect to a common fixed coordinate system. Since the 
original description in terms of helicities was correct 
relativistically, it is clear that the JJ^f-matrix approach 
is also completely general and relativistically correct, 
provided that spin expectation values are referred 
always to the individual rest frames of the various 
particles. 

For the construction of the coefficient functions 
Mj(W, cos#), it will be convenient to change from a 
plane-wave representation of the transition amplitudes 
to a representation in terms of the total angular mo­
mentum quantum number / , and the z projection of 
the angular momentum JZ=M. The necessary trans­
formation8 is provided by the representation coefficients 
for the rotation group,21 

<fyXiX21 JM\1%')= [ ( 2 7 + l)/4*Ji* 

X S w W D " . X i - x / * ( « , 0, -cf>) , (B3) 
with 

Dx/ (a/37) = e-*"dx/ (0) e-ty. 

This transformation leads to the result of Jacob and 
Wick, 

A-MM,(w,e,<p)=(2ip)-i J2J(2J+I) 

XSj(\e\d; AsA6)£>x/*(<?, 6,-<p), (B4) 

A = A«—A&, /*=Ac—Ad. 

The rotational invariance of the interactions implies 
that the 5 matrix connects only states of the same J 
and M, and that the elements of S are in fact inde­
pendent of M. If parity is conserved in the reaction, the 
partial-wave matrix elements Sj transform according 

21 M. E. Rose, Elementary Theory of Angular Momentum (John 
Wiley & Sons, Inc., New York, 1957). 

to the relation 

Sj(—\c> — A ;̂ —As, —\b) = VpSj(^d^d',^a^b) , (B5) 

where rjp is equal to + 1 (—1) if the relative intrinsic 
parity of the initial and final particles is even (odd). 
This result can be cast in a more useful form by intro­
ducing eigenstates of the parity operator 

|7J f±;XiX 2 )= (l/v2)[|/JfAiX2> 
± | / J f , - X i , - X 2 > ] , A i > 0 , (B6) 

with the transformation properties 

P\JM± ; XiX2>= = N i 2 ( - l)J~l\JM± ; XiX2>. (B7) 

Here rju is the relative parity factor for particles 1 and 
2. Since the matrix Sj connects only states with the 
same parity, it has at most eight nonvanishing elements 
in this representation. Ordering the parity eigenstates 
as ] + ; + + ), 1 + ; + - ) , | - ; + - > , | - ; + + ), one 
easily obtains the most general forms for Sj consistent 
with the conservation of angular momentum and 
parity. 

and 

Sj= 

" a j bj~ 0 
bj+ cj 0 

0 0 dj 
. 0 0 ej+ 

f 0 0 Aj+ 
0 0 Cj+ 

A j - Cr 0 
lB. r Dj~ 0 

0 ' 
0 

ej~ 

fj\ 

Bj+ 

DA 
0 
0 

^ = + 1, (B8) 

U P = - 1 , (B9) 

where ?7P=??a&*?7cd= + l(— 1) for even (odd) relative 
(Yc,Yd) parity. For either case, the matrix elements 
A± are of the form A±=AzLA/. The elements of Sj are 
functions of W alone. Time reversal invariance does 
not add any new restrictions on the_ matrix elements, 
since the time reversed interaction Yc-{-Yd-^ iVa+A7& 
is not accessible to experiment. 

The final symmetry which we shall impose on Sj is 
that of charge conjugation invariance. The application 
of C to an antiparticle-particle helicity state | /MA1A2) 
interchanges the roles of 1 and 2, without changing 
the helicities. Since the antiparticle index is conven­
tionally written first, this interchange induces the 
transformation 

C|/MAiA2)= (-l)J-l\JM\2\i): (BIO) 

where the phase factor is obtained using the methods 
of Jacob and Wick.8 The corresponding properties of 
the parity eigenstates are easily deduced. However, it 
must be recalled that the antiparticle helicity index in 
Eq. (B6) is restricted to positive values. This restriction 
introduces an extra minus sign in the transformation of 
the state | JM— ; - | — ) . The imposition of charge-
conjugation invariance leads to relations between the 
elements of the matrices Sj of Eqs. (B8) and (B9), and 
those of the corresponding matrices Sjc for the charge-
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conjugate reaction. All of the matrix elements of Sj 
and Sjc are in fact equal with the exceptions of ej and 
e/ in the even parity case (rjp== 1), and A j , A/Cj, and 
Cj in the odd parity case (%= — 1), and these simply 
change sign, e.g., ejc=—ej, etc. 

Returning to the matrix notation, we can express 
the helicity transition matrix f (0,0) in terms of Sj as 

i(w,e,4>)=(?ipY 
1 £ (2/+1) 

JM 

xuJMHo,<i>)Sj(W)UMOfl) 9 (Bi i ) 

where the unitary matrices UJM(0,<I>) connect the eigen-
states of J, M, and parity with the plane wave helicity 
states. If the latter are written as column vectors in 
the order | + + > , | + - > , | - + > , | - - > , ^ J M ( 0 0 ) is 

found to be 
(Dn 

UJ,M(0,4>) — 

0 0 Dx 

0 DMiJ DM,-IJ 0 

0 DMiJ DM,-IJ 0 

DA 0 0 -DA 

(B12) 

The rotation coefficients D\/{<j>,6, —<f>) appear with 
the indicated arguments; in the special case 0 = 0 = 0 , 
Dx/(0,0,0) = 6xM. As noted previously, f(PF,0,0) can be 
interpreted as a transition matrix which connects initial 
and final proper spin states with the quantization axis 
for each particle chosen along its direction of motion in 
the over-all center-of-mass system. The Wolfenstein-
Ashkin spin transition matrix M(Wfi,<j>) is obtained 
from l{Wfi,4>) by re-expressing this matrix in a repre­
sentation in which the proper spin states are quantized 
relative to a common axis. The necessary transforma­
tion is easily derived. We will denote by |XiX2) a two-
particle spin state in which the spin components of 
particles 1 and 2 along the z axis (the direction of motion 
of the incident antiparticle) are equal in their respective 

rest systems to Xi and X2. In the initial helicity state 
|00X«X&) in Eq. (Bl), the antinucleon is assumed to 
move in the positive z direction, and the nucleon, in 
the negative z direction. Noting the phase conventions 
used by Jacob and Wick,8 this state is seen to corre­
spond to the spin state 

(_ l ) f -X^7rS & l 2 , | X _ X & ) . 

Similarly, the final helicity state |00XcXd), in which the 
antihyperon moves in the 0,0 direction, and the 
hyperon, in the ir—0, 7r+0 direction, corresponds to a 
spin state 

( - l ) i - ^ e x p ( - M - S ) e x p(_^ 7 r 5 d ? y ) |x -x d ) , 
S = S c + S d . 

In these expressions, Sj is the spin operator of particle 
j in its rest system, and the azimuthal orientation of 
the y axis is arbitrary. With these conventions, the spin 
transition matrix M is given by 

M(Wfirf>) = ( - l ) * - x & ( - 1 ) * - ^ e x p - M - S 

Xexp(—iirSd,y)l(yVfi,<l>) expiTrSb,y. (B13) 

The 4X4 matrix M can be expressed as a linear com­
bination of the sixteen independent matrices <r# defined 
in Sec. I I a; the necessary relations are given in Eqs. (5). 
We will use the convention that the Pauli matrices <FI 
act in the 2X2 proper spin space of the antiparticles, 
while the matrices CT2 act in the spin space of the par­
ticles. The result for M in Eq. (B13) may then be re­
written in terms of the Pauli matrices as 

M(PF,0,0) = e x p [ - i 0 ^ . ( < , 1 + a 2 ) > 2 J ^ , 0 , 0 > 2 i C . (B14) 

After a lengthy but simple calculation using the ex­
pression for f given in Eq. (B12), and the matrix repre­
sentations for UJM and Sj, the transition matrices for 
even and odd relative (YayYb) parity may be reduced 
to the forms given in Eqs. (11) and (13). The resulting 
coefficient functions Mj(W, cos0) are given in the even 
parity case by 

Afi= (16ip)~l E j ( 2 / + l ) [ 2 a j cosddoQ
J+2fjd0o

J-^bj sindd10
J 

+ (cj+dj)(l+cose)d11
J-(cJ-dj)(l-cosd)d-1,1

J-], (B15) 

M2= (\6ip)~l T*j(2J+X)[2aj cosddooJ-2fjd0o
J-±bj sm9d10

J 

~(cj+dj)(l-cosd)dnJ+(cj-dj)(l+cosd)d^y2, (B16) 

sin0Jkf3= -Klbip)-1 Z j (2J+l ) [2a j sin0^oo /+45J cos6d10
J 

+ (cj+dj) sw0duJ+ (cj-dj) sin0d_i,iJ] , (B17) 

smdM^i(4ip)-1Zj(2J+l)ejd10
J, (B18) 

2(1+0)50)^5= - (16ip)~l Y,j(2J+l)t2aj(l+cose)dooJ-4bj sindd1Q
J 

-(cj+dj)(3-cosd)d11
J+(cj-dj)(l+cos6)d^1,1

J2, (B19) 

2 ( l - c o s 0 ) M 6 = (16ip)~l L J ( 2 / + l ) [ 2 a j ( l - c o s 0 ) J o o J + 4 Z > J sm6d1Q
J 

+ (cj+dj)(l-cosO)duJ- (cj-dj)(3+cos6)d-1§1
J] , (B20) 

(B21) 

(B22) 

2 sin0M7= - (Up)-1 Hj(2J+l)b/d10
J, 

2 sin0M8= (Up)-1 Zj(2J+l)e/dXoJ, 
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The rotation coefficients d\/(B) for the indices of interest are given by 

d1B'(6) = -
sin0 

[J(/+l)]1/2<f(cos0) 

[ 

•P j(cose) 

l - c o s 0 r d d2 n 
d_ltl

J(d)= J — -Pj(cosd)+(l+cosd)-^~-Pj(cosd) : / ( /+ l )U(cos0) 

l+cos0r d 

d(cosd)2 

d2 l-j-cosflr a <F ~\ 
dnJ(6) = Pj(cos0)-(l-cos0) Pj(cos0) , 

J(J+l)ld(cosO) d(cosd)2 J 

(B23) 

(B24) 

(B25) 

(B26) 

where Pj(cos6) is the ordinary Legendre polynomial. 
Using these results, it is readily verified that the angular 
factors which appear on the left-hand sides of 
Eqs. (B17)-(B22) are contained also on the right-hand 
sides. Since these are precisely the factors contained in 
the vectors 1, m, and n, the validity of the result for M 
given in Eq. (11) is established. In particular, the co­
efficient functions M3-(W, cos0) are nonsingular for 
| cos01 < 1 and we may consequently use the angular 
dependence of 1, m, and n to obtain some information 
about the angular variation of the reaction cross section 
and the polarization and spin correlation parameters. 
The apparent asymmetry of the result for M, in which 
<ri-l<r*l and o,i*mo,2*m appear explicitly, but in which 
(r«novn is absent, is connected with the presence of the 
term M^i'02. Although M2<7i*<r2 can be expressed as a 
linear combination of the foregoing terms, the co­
efficients are, in general, singular at 0=0 or 0=7r, and 
it is preferable to use ori'<r2 as one of the independent 
invariants. However, it may be useful in some situations 
to introduce an extra term in Eq. (11), and use an over-
complete set of matrices containing ori»o"2, ovlovl, 
ori-movm, and ovnovn. The coefficient functions, only 
three of which are independent, can be so chosen that 
the coefficient functions are nonsingular. 

A similar calculation for the case of odd (Ya,Yb) 
relative parity leads to a spin transition matrix of the 
form given in Eq. (13), with coefficient functions 
Mj(W, cos0) expressed in terms of the elements of Sj, 
Eq. (B9), as 

2 cos§0Mi 
= - ( « # ) - 1 E J ( 2 / + 1 ) 

XlAj sinlMio'-Cj cosJMn'] , (B27) 
2 cos|0M"2 

= ( 4 ^ ) - 1 Z / ( 2 / + l ) 
X [Bj cosi0dOQ

J- Dj sinj^ioJ] , (B28) 
2 sin|0M"3 

= ( 4 ^ ) - 1 Z ^ ( 2 / + l ) 
X[Aj' cosWioJ-C/ sin§06U/] , (B29) 

= (4f#)-1Ej(2/+l) 
X [BJ sini0JO(/+ZV cos|0dioJ] , (B30) 

2 cos§0 sin0Af 5 
= - i ( 4 i # ) " 1 E / ( 2 / + l ) 

X[A j cosiddioJ+Cj s i n ^ n ' ] , (B31) 

2 smiBMa 
= i ( 4 # ) - 1 E j ( 2 / + l ) 

X [_Bj smWwJ+Dj cos^ io J ] , (B32) 

2 sinj0 sin0M7 

= - i ( 4 ^ ) - 1 E / ( 2 / + l ) 
X[A/ sin|0^ioJ+CJ

/ cos^_ i ( i
J ] , (B33) 

2 cos-10-Ms 
= ^ ( 4 ^ ) - 1 E / ( 2 / + l ) 

X[Bj co$%OdooJ-D/ s in |0^io J] . (B34) 

As before, one can easily verify that the indicated angu­
lar factors appear on the right-hand sides of these ex­
pressions, so that the functions Mj are nonsingular for 
| c o s 0 j < l . I t is in fact for this reason that we have 
chosen to use the invariants <TiXovl and o-iXovm 
in Eq. (13) rather than [<ri'm(72«n—<ri«iwr2«m] and 
[cri«n<F2 ' l—ovlovn]; the latter would be equivalent to 
the former as far as their spin dependence is concerned, 
but would require coefficients which diverged for 0 --> 0 
and 0—>7r, respectively. In the even parity case, the 
forms o-i x 0-2 • n and [<FI • l<r2m— 01 • m<r2 • 1] are completely 
equivalent. These results, and also the difficulty with 
the invariants cri«(r2, o-i • lo-2 • 1, o v nur^m, and o v n o v n 
in the case of even (Yc,Yd) relative parity, are special 
instances of a rule, that the minimal angular dependence 
of the coefficient functions is that of the vectors 1, m, 
and n in the least complex set of invariants, that is, 
the set which contains the least number of factors of 
I, m, or ii in each invariant. This rule is also valid for 
reactions involving only spin —0 and spin — | particles, 
and is probably true in general. 


